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Opportunistic Link Scheduling, Power Control, and
Routing for Multi-hop Wireless Networks over

Time Varying Channels

Yih-Hao Lin and R. L. Cruz

Department of Electrical & Computer Engineering
University of California, San Diego

La Jolla, CA 92093-0407
y5lin@ucsd.edu, cruz@ece.ucsd.edu

Abstract

We consider a cross-layer optimization problem for multi-hop wireless networks
over time varying channels. The system consists of L interfering links, where
the transmission power and rate of link l (= 1, . . . , L) are specified in vectors
~P = [P1 . . . PL] and ~X = [X1 . . . XL] respectively. In every time slot, the scheduler
schedules the transmissions by assigning a resource allocation vector ~V = [~P ~X]T.
We denote the expectation of ~V by E(~V ). Our objective is to find the optimal
scheduling policy which minimizes the cost of average resource consumption while
maintaining average service guarantees to each user. We develop a unified frame-
work, in which the cost of the average resource consumption is given by a convex
function f(E(~V )) and the minimum average service guarantees are given by a set
of convex constraints ~g(E(~V )) ≤ 0. By means of convex optimization and sto-
chastic approximation, we obtain the solution by solving the corresponding dual
problem. An iterative algorithm is proposed and analyzed, which schedules the
transmission powers and rates adapting to the channel variations. If the channel
states are described by a finite-state mixing process, it is shown that our algorithm
asymptotically attains the optimal cost.

1 Introduction

The growing interest in multi-hop wireless network increases the demand for efficient
resource allocation methods. To maintain the quality of service and manage the cost of
average resource consumption, a scheduler is responsible for coordinating all communi-
cating nodes in the system. In this paper we assume that the scheduler is centralized.
This allows us to obtain insight into the structure of the problem, and our solution to
the problem in this case serves as a benchmark for distributed scheduling algorithms.

In each time slot, a scheduler specifies the transmission power and rate on each
link. Since wireless channel conditions are time varying, scheduling a transmission over
a bad channel results in high power consumption and may result in large interference.
Therefore, an intelligent scheduler should take into account the instantaneous channel
state information (CSI), such as background noise, pathloss gain, and fading, as well the
variations of these quantities in time and space, in order to achieve an efficient resource
utilization.



Several studies have addressed the problem of throughput utility maximization, con-
sidering time varying channels. In [9], Tse proposed the proportional fair scheduler (PFS),
which exploits multi-user diversity in a time varying environment. Under the stationary
assumptions on the channels, the throughput vector [Xavg

1 , . . . , Xavg
L ] of PFS achieves the

maximum of the logarithmic utility function
∑L

l=1 log(Xavg
l ) among all schedulers [5].

Agrawal [1] and Stolyer [8] further generalize this idea by considering arbitrary utility
functions of the form

∑L
l=1 fl(X

avg
l ), where fl(·) is concave and differentiable.

One weakness of the utility maximizing scheduling is that the optimal scheduler favors
users with better channel conditions. This implicitly decreases the priority of users with
poor channel quality. However, it may be highly desirable to impose a minimum average
performance requirement on each link. To address this issue, Lee et al. [7] reconsidered
the throughput maximization problem and impose a minimum throughput constraint
on each user. However, their solution is only asymptotically optimal in the limit of an
infinite number of users.

The structure of optimal scheduler under time varying channels is investigated in this
paper, in which we minimize the cost of average resource consumption while maintaining
a minimum average performance guarantee on each link. The problem is formulated as
an optimization. An iterative algorithm is proposed to obtain the solution. By means
of convex optimization and stochastic approximation, we verify that our algorithm ap-
proaches the optimum irrespective of the number of users. We show that besides the link
layer scheduling and power control problem, our framework can be further extended to
solve other network layer optimization problems, such as power efficient routing.

2 Notations and System Model

We consider an omni-antenna wireless system consisting of N nodes and L links. The
instantaneous transmission power and rate are specified in the vectors ~P = [P1 . . . PL]

and ~X = [X1 . . . XL] respectively. Time is divided into fixed duration intervals, called
time slots. At the beginning of time slot k (= 1, . . . ,∞), the scheduler specifies the

resource allocation for the system in the vector ~V = [~P ~X]T . We model the underlying
time varying phenomena as a stationary process {ω(k), k ≥ 0} with finite state space
S and stationary distribution {s(ω), ω ∈ S}. The outcome of the process is called the
system state. In state ω, the power loss gain from the transmitter of link l1 to the
receiver of link l2 is denoted by Gl1l2(ω) including path loss and fading. On link l, the
receiving end experiences noise power ξl(ω). We hence have the signal to interference

and noise ratio (SINR) γl(ω) =
Gl,l(ω)PlP

k 6=l Gk,l(ω)Pk+ξl(ω)
. The sets of all outgoing links and

incoming links at node n are denoted by E(n) and F(n) respectively. Assuming the
maximum instantaneous data rate possible by link l is a function R(γl) of SINR and the

peak transmission power of node n is limited to Pmax
n , a resource allocation ~V is feasible

if and only if ~X and ~P satisfy the following constraints.

(Power Constraints)
Pl ≥ 0 for l = 1, . . . , L∑

l∈E(n) Pl ≤ Pmax
n for n = 1, . . . , N

(1)

(Rate Constraints)
Xl ≥ 0 for l = 1, . . . , L
Xl ≤ R(γl(ω)) for l = 1, . . . , L

(2)



We denote D(ω) as the set of all feasible resource allocation ~V . It is uniformly bounded
over S under the finite state assumption.

3 Scheduling Policy and Achievable Set of Average

Resource Allocation

In this paper, we consider a probabilistic scheduling policy, where the scheduling deci-
sions are random variables over the state space S. Specifically, in state ω, a scheduling
policy π specifies a feasible resource allocation ~V randomly from a specified control set
K(ω) with probability distribution φω(~V ), where K(ω) is a subset of D(ω), φω(~V ) ≥ 0

and
∑

~V ∈K(ω) φω(~V ) = 1. Therefore, given a scheduling policy π, the average resource

allocation Eπ(~V ) can be evaluated as below.

Eπ(~V ) =
∑
ω∈S

s(ω)
∑

~V ∈K(ω)

φω(~V ) ~V . (3)

We omit the subscript π when the policy is known explicitly. We define the achievable

set D̃ =
{
~v| There exists π such that ~v = Eπ(~V )

}
. The uniform boundedness of D(ω)

implies the boundedness of D̃. Moreover, one can verify the convexity of D̃ by a time-
sharing argument. In the next section, we introduce the framework for optimal link
scheduling and power control, where we only look into link layer scheduling problems.
The extensions to network layer routing problems are discussed in section 5.

4 Generalized Framework for Link Scheduling and

Power Control

Considering link scheduling and power control, most of the link layer resource manage-
ment problems can be formulated as a special case of the following optimization,

minimize f(E(~V )) (4)

subject to ~g(E(~V )) ≤ 0

E(~V ) ∈ D̃,

where f(·) is a scalar valued convex function and ~g(·) is a vector valued convex function.

For example, if we set the cost function to f(E(~V )) = −
∑L

l=1 log(E(Xl)), the optimiza-

tion reduces to the proportional fair scheduling problem. If we let f(E(~V )) =
∑L

l=1 E(Pl),
it becomes the power efficient scheduling problem.

Since the constraint set D̃ is bounded and convex, if E(~V ) is considered as the in-
dependent variable, the problem (4) fits in with the framework of convex optimization.
The duality technique [2] in convex analysis helps to simplify the problem by moving the

constraints into the cost function. The dual function q(~β) is defined as

q(~β) = min
E(~V )∈D̃

L(E(~V ), ~β), (5)

where L(E(~V ), ~β) := f(E(~V )) + ~β · ~g(E(~V )) is the Lagrangian of the primal problem.

The dot product is defined as the inner product of two vectors. One can verify that q(~β)



is a concave function [2]. The duality theory defines the dual problem below.

maximize q(~β) (6)

subject to ~β ≥ 0

The solution of (6) is denoted by ~β∗, where the elements of the vector ~β∗ are called
Lagrange multipliers. From the weak duality theorem, it is recognized that the dual
optimal value q∗ is a lower bound of the primal optimal value f ∗. If there exists a feasible
solution in the relative interior of D̃, the strong duality theorem ensures that q∗ = f ∗.
In the following subsections we first solve the problem with a linear cost function and
linear constraints, and then generalize it to nonlinear problems with the help of additional
auxiliary variables.

4.1 Linear Cost and Linear Constraints

For a system with a linear cost function f(~v) = ~α · ~v and constraints ~g(~v) = A~v −~b,
the primal problem (4) becomes

minimize ~α · E(~V ) (7)

subject to AE(~V ) ≤ ~b

E(~V ) ∈ D̃,

where ~α and ~b are vectors and A is a matrix.

Theorem 1. Given the optimal dual solution ~β∗, the optimal scheduling policy π∗ for (7)

is given by { ( K∗(ω), φ∗ω(~V ) ) | ω ∈ S }, the optimal control sets and the corresponding

distributions, where K∗(ω) = arg min~V ∈D(ω)

[
~α · ~V + ~β∗ · (A~V −~b)

]
, and φ∗ω(~V ) is the

distribution over K∗(ω) such that Eπ(~V ) ∈ D̃, ~g(Eπ(~V )) ≤ 0, and ~β∗ · ~g(Eπ(~V )) = 0.

Proof. The dual function of (7) can be written as

q(~β) = min
E(~V )∈D̃

{
~α · E(~V ) +~β · (AE(~V )−~b)

}
(8)

= min
π

∑
ω∈S

s(ω)
∑

~V ∈K(ω)

φω(~V )
[
~α · ~V + ~β · (A~V −~b)

]
=

∑
ω∈S

s(ω) min
K(ω),φω(~V )

{
∑

~V ∈K(ω)

φω(~V )
[
~α · ~V + ~β · (A~V −~b)

]
} (9)

To achieve the minimum in (9), the control set K(ω) must be a subset of

arg min
~V ∈D(ω)

[
~α · ~V + ~β · (A~V −~b)

]
. (10)

The the proof is accomplished by the following lemma.

Lemma 1. (Optimality Conditions for Convex Optimization) [2]. The primal and dual

variable pair, (E(~V ∗), ~β∗), is an optimal solution-Lagrange multiplier pair of (4) if and
only if

E(~V ∗) ∈ D̃, ~g(E(~V ∗)) ≤ 0 (Primal Feasibility)
~β∗ ≥ 0, (Dual Feasibility)

E(~V ∗) = arg minE(~V )∈D̃ L(E(~V ), ~β∗) (Lagrangian Optimality)
~β∗ · ~g(E(~V ∗)) = 0 (Complementary Slackness)



Since {φω(~V )} sum up to one, from (9), we can further deduce that

q(~β) =
∑
ω∈S

s(ω) min
~V ∈D(ω)

[
~α · ~V + ~β · (A~V −~b)

]
= E

[
min

~V ∈D(ω)

{
~α · ~V + ~β · (A~V − b)

}]
. (11)

For ease of exposition, we define the quasi-dual function as

q(ω, ~β) := min
~V ∈D(ω)

{
~α · ~V + ~β · (A~V − b)

}
(12)

= ~α · ~V ∗(ω, ~β) + ~β · (A~V ∗(ω, ~β)−~b), (13)

where ~V ∗(ω, ~β) is a solution to the minimization on the right hand side of (12). Simple

convexity arguments ensure that q(ω, ~β) is concave in ~β. Substituting q(ω, ~β) into (11)
and (6), the dual problem is turned into the following stochastic convex optimization
problem.

maximize E[q(ω, ~β)] (14)

subject to ~β ≥ 0

For any concave function q(~β), a vector ~µ is called a subgradient of q(~β) if it satisfies

the inequality q(~β′) − q(~β) ≤ ~µ · (~β′ − ~β) for all ~β′. By Danskin’s theorem [2], one can

show that the vector (A~V ∗(ω, ~β)−~b) is a subgradient of q(ω, ~β) with respect to ~β.
To solve (14), we apply the following algorithm.

Algorithm 1. (Quasi-Gradient Method [3]) At the beginning of the kth time slot, update

the dual variables ~βk by the recursion (15) below with step size εk, where εk > 0,
∑

k εk =
∞, and

∑
k ε2

k < ∞.

~βk = [~βk−1 + εk−1~µ
k−1]+, (~β0 = 0, ~µ0 = 0) (15)

The vector ~µk is a subgradient of q(ω(k), ~βk) and [ · ]+ := max(·, 0). We choose the

vector ~µk = (A~V ∗(k)−~b) in particular, where

~V ∗(k) ∈ K∗(ω(k)) = arg min
~V ∈D(ω(k))

{
~α · ~V + ~βk · (A~V − b)

}
.

If {ω(k), k ≥ 0} are independent identically distributed (i.i.d.), the algorithm ensures

that ~βk → ~β∗ as k → ∞ with probability one. In addition, if we choose the step size
εk = ak/k, where limk ak → a and a > 0, the long-term average of ~V ∗(k) converges to
the primal optimal solution of (7) with probability one.

Remark 1. The i.i.d. assumption on ω(k) can be weaker. Algorithm 1 is still applica-
ble if the dependency among {ω(k), k ≥ 0} decreases in time. When the dual solu-

tion ~β∗ is unique, one can verify via the stochastic approximation ( [4], [6] Theorem

8.2.5 and 5.2.2) that ~βk → ~β∗ with probability one if ω(k) satisfies the mixing property:

|Ekµ(~β, ω(i))− Eµ(~β, ω(i))| → 0 as i → ∞, where Ek denotes the expectation condi-

tioned on Fk, the filtration of {~β1, ω(1), . . . , ~βk, ω(k)}.



To prove the asymptotic optimality, we rewrite (15) as

~βk = ~βk−1 +
ak

k
(~µk−1 + ~zk−1) , (16)

where ~zk is the vector of reflection terms of the [ · ]+ operator and ~zk ≥ 0. Considering
a telescoping sum on both sides, we derive the following.

~βt = ~βt−1 +
1

t
(at~µ

t−1 + at~z
t−1 + ~βt−1 − ~βt−1) (17)

=
1

t

t−1∑
k=0

(ak − a)~µk +
1

t

t−1∑
k=0

(ak − a)~zk +
1

t

t−1∑
k=0

a~µk +
1

t

t−1∑
k=0

a~zk +
1

t

t−1∑
k=0

~βk

Since ~βk → ~β∗ with probability one, we have limk→∞
1
t

∑t−1
k=0

~βk = ~β∗ with probability

one. The boundedness of D(ω) implies that ~µk = (A~V ∗(k)−~b) is bounded. Because ~zk

is the reflection term, it is also bounded. Note that limk→∞(ak − a) = 0. Taking limits

on (17) and then subtracting ~β∗ from both sides, we arrive at

lim
k→∞

(
1

t

t−1∑
k=0

~µk +
1

t

t−1∑
k=0

~zk

)
= 0 with prob. 1 (18)

When β∗m, the mth entry of ~β∗, is positive, the corresponding reflection term zk
m

vanishes for k large enough. By (18), we therefore have limk→∞
1
k

∑k−1
t=0 µt

m = 0. Similarly,

if β∗m = 0, one can show that lim supk→∞
1
k

∑k−1
t=0 µt

m ≤ 0. Replacing ~µk with (A~V ∗(k)−~b),
we get the asymptotic feasibility described in the theorem below.

Theorem 2. (Feasibility) If the limiting time average of ~V ∗(k) exists, it lies in the
feasible region of (7) with probability one, which means

A

[
lim
t→∞

1

t

t−1∑
k=0

~V ∗(k)

]
−~b ≤ 0 with prob. 1.

To show the asymptotic optimality, we take time average on (13) and then group
the summands with respect to system state ω. The theorem below is then derived by
applying the stationary property of ω(k).

Theorem 3. (Optimality) If the limiting time average of ~V ∗(k) exists, it attains the
optimal solution with probability one. That is

f ∗ = ~α ·

{
lim
t→∞

1

t

t−1∑
k=0

~V ∗(k)

}
with prob. 1.

4.2 Convex Cost or Convex Constraints

If f(·) or ~g(·) are nonlinear functions, we cannot apply the decomposition in (9) directly
using the separable property. To accommodate the non-separable issue, we define an



auxiliary variable ~Y to substitute E(~V ) in f and ~g. Assuming the elements of D̃ are

bounded above componentwise by a vector ~Dmax, the optimization (4) becomes

minimize f(~Y ) (19)

subject to g(~Y ) ≤ 0, 0 ≤ ~Y ≤ ~Dmax

~Y = E(~V ), E(~V ) ∈ D̃

By weak duality theory and convexity, the solution can be approached using the algorithm
similar to that for the linear cases. Note that if ~Dmax is not known explicitly, one can
use an estimate instead and update it in each time slot.

5 Optimal Routing and Flow Rate Assignments

Now we extend our framework to consider other network layer optimizations. There are
J flows in the system indexed by j = 1, . . . , J . The source and destination nodes of flow
j are denoted by ns(j) and nd(j) respectively. All links used by flow j for routing form
a set G(j) of size mj. The collection of all flows on link l constitutes the set H(l). In a
time slot, link l has data rate Clj for flow j ∈ H(l). Given G(j) = {l1, . . . , lmj

}, we define
~Cj = [Cl1j . . . Clmj j] as the routing vector of flow j. Furthermore, we group all routing

vectors into a vector, ~C = [~C1 . . . ~CJ ], called the flow vector. The essential requirement
for routing problem is to maintain minimum end-to-end throughput C̃j on each flow j.
Under this requirement, two constraints are imposed on {Clj}.

(Flow Constraints) ∑
j∈H(l) Clj ≤ Xl , l = 1, . . . , L

Clj ≥ 0
(20)

(Flow Conservation Constraints)
For n = 1, . . . , N. j = 1, . . . , J

∑
l∈E(n), l∈G(j)

E(Clj)−
∑

l∈F(n), l∈G(j)

E(Clj) + νnj = 0, where νnj =


C̃j, if n = nd(j)

−C̃j, if n = ns(j)
0, otherwise

(21)

The resource allocation vector now becomes ~V = [~P ~X ~C]T. In particular, the new feasi-

ble set D(ω) consists of all vectors ~V = [~P ~X ~C]T satisfying the power constraints, rate
constraints and flow constraints. In the following subsection, we discuss our framework
for the power efficient routing problem.

5.1 Power Efficient Routing

The power efficient routing problems can be formulated as the optimization below.

minimize
L∑

l=1

E(Pl) (22)

subject to E[~V ] satisfies (21)

E(~V ) ∈ D̃



The quasi-dual function of this problem is given below.

q(ω, ~β) = min
~V ∈D(ω)

L∑
l=1

Pl +
J∑

j=1

N∑
n=1

βkj(
∑

l∈E(n), l∈G(j)

Clj −
∑

l∈F(n), l∈G(j)

Clj + νnj) (23)

The dual problem is therefore expressed as

maximize Eq(ω, ~β)

subject to ~β ∈ Rm, (24)

where m is the dimension of the constraints. To evaluate (23), first, we rearrange the
summands on the right hand side of (23) with respect to Clj,

q(ω, ~β) = min
~V ∈D(ω)

L∑
l=1

Pl +
J∑

j=1

L∑
l=1

σljClj + σ0, where σ0 =
J∑

j=1

N∑
n=1

βkjνnj (25)

and σlj is the new coefficient of Clj after rearrangement. For fixed ~P and ~X, equation
(25) is a linear optimization problem in Clj and the flow constraints form a polytope for
{Clj}. Hence it has solutions at extreme points of (20). One can verify that the optimal
flow rates borne on each link are given by

C∗
lj =


Xl if σlj = arg minj∈H(l) σlj, and σlj < 0

(If not unique, pick up one randomly)
0 else.

(26)

Substituting (26) into (25) and rearranging the summands according to Xl, we arrive at
the equation

q(ω, ~β) = min
~V ∈D(ω)

L∑
l=1

Pl +
L∑

l=1

σ′lXl + σ0, (27)

where σ′l is the corresponding coefficient after the second rearrangement. Similarly, fixing
~P , the optimal transmission rate on link l is given by

X∗
l =

{
Rl(γl) if σ′l < 0
0 if σ′l ≥ 0.

(28)

Substituting (28) into (27) and then grouping the summands according to Rl(γl), the
evaluation of quasi-dual function reduces to the following optimization with respect to
transmission powers:

q(ω, ~β) = min
~V ∈D(ω)

L∑
l=1

Pl +
L∑

l=1

σ′′l Rl(γl) + σ0,

where σ′′l is the corresponding coefficient. The solution of (22) then can be obtained
through the following algorithm.

Algorithm 2. At time slot k, the optimal scheduling policy schedules a transmission
power vector ~P ∗(k) from the set below.

arg min
~V ∈D(ω(k))

{
L∑

l=1

Pl +
L∑

l=1

σ′′l Rl(γl)

}
(29)



The optimal data rate X∗
l (k) and flow rate C∗

lj(k) can be deduced from (28) and (26).
The dual variable is updated recursively as

~βk+1 = ~βk +
ak+1

k + 1

 ∑
l∈E(n)

C∗
lj(k)−

∑
l∈F(n)

C∗
lj(k) + νnj

 , ( ~β0 = 0 )

where limk→∞ ak = a and a > 0.

Let ~V ∗(k) = [~P ∗(k) ~X∗(k) ~C∗(k)]T, if the process ω(k) is i.i.d. or mixing as described

before, the long-term average of ~V ∗(k) converges to the optimal solution of (22).
In the next section, we exam a numerical example of power efficient routing, where

we apply the linear rate function R(γl) = W ′γl. The cost function in the evaluation of
(29) then becomes componentwise concave in Pl. One can show that the solutions to
such problems happen at the extreme points of power constraints (1).

6 Numerical Examples

This example consists of 7 nodes and 8 links, which are depicted in figure 1(a) . There
are two flows, each requires minimum throughput C̃. Flow 1 originates at node 1 and is
destined to node 5; it exploits links 1, 3, 4, 5, and 7 to route the traffic. Flow 2 originates
at node 3 and is destined to node 7; it uses link 2, 3, 4, 6, and 8 to route the traffic. We set
Pmax

n to 50 mW and W ′ to 50 MHz. The channel states are i.i.d. The background noises
are normally distributed with mean zero and an average power of 1 mW. Moreover, the
noise power ξn is truncated above at 10 mW and rounded to the second digit in precision.
The channel gain Gl1l2 is given by e/d2(l1, l2), where e is an exponential random variable
with mean 1 and d(l1, l2) is the distance between the transmitter of link l1 and the receiver
of link l2. In addition, the factor e is truncated from above at 2 and rounded to the third
digit in precision. The step size is εk = 2.5

500+k
. To investigate how system performs

with respect to C̃, we gradually increase the minimum throughput requirements from
0.5 to 30 Mbps. The traces of the average flow rates carried on each link are plotted
in figure 1(c). The upper curve contains 8 overlapped traces of the time averages of
{C11, C22, C31, C32, C41, C42, C51, C62} and the lower curve 2 overlapped traces of the time
averages of {C71, C82}. Because the topology is symmetric, we only focus on the behavior
of flow 1. It is recognized that when the requested throughput is below 5 Mbps, the
optimal route of flow 1 is {1 → 2 → 4 → 6 → 5}; as the requested throughput increases,
the direct route {1 → 5} comes into play. Although both {1 → 2 → 4 → 6 → 5} and
{1 → 5} are energy efficient paths, on route {1 → 2 → 4 → 6 → 5} each link contributes
less interference to the system, and the possibility that all of the links are in deep fade
at the same time is small. In figure 1(b), we gather the data from slot 5001 to slot 25000
and plot the average power consumption and average quasi-dual value respect to C̃. We
can see that the curve of average power consumption closely follows that of the average
q(ω, βk) as expected. The gap between both curves will diminish to zero in the limit of
an infinite number of time slots. When C̃ is small, the scheduler works like a TDMA
system. In other words, in every slot, at most one of the links is activated, and the
scheduler refrains from transmitting on a link unless that channel is in good condition.
Therefore, the total power consumption increases linearly in the low throughput region.
However, as C̃ goes up to 20Mbps, more links need to be activated in a slot. The total
power consumption then increases nonlinearly due to interference.
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Figure 1:

7 Conclusions

In this paper, we have shown how a joint link scheduling, power control, and routing
optimization problem over time varying channels can be formulated as a stochastic convex
optimization. In addition, we proposed a centralized iterative algorithm which exploits
the CSI to schedules the transmissions. We have proved that the optimality and feasibility
is attained asymptotically. The numerical results show that for flows with minimum
throughput requirements, to save power consumption the scheduler opportunistically
routes the traffic through links with better channel conditions.
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